Reed-Solomon Proximity Gaps

Interactive Visualization of Recent Breakthroughs:
Crites & Stewart (2025) & Diamond & Gruen (2025)

Parameter Configuration

0.500
Code Rate ($\rho = k/n$)
0.530
$H_q(\delta)$ Entropy
0.470
List-Decode Capacity
0.465
Random Words Bound
0.030
Entropy Gap
0.005
Capacity Gap

Regime Indicator

Unique Decoding: $\delta \leq (1-\rho)/2$
Johnson: $\delta \leq 1-{\rho}^{1/2}$
Random Words (DG25)
Capacity: $\delta \leq 1-\rho$
Attack Zone: $\delta > 1-\rho$

Proximity Gaps Regions

UDR: $(1-\rho)/2$
LDR: $1-{\rho}^{1/2}$
Random Words
Violation Zone

Green (UDR): Guaranteed unique decoding. Blue (LDR): Johnson bound regime. Purple: Random words bound. Red: Beyond all bounds.

Capacity Bounds Comparison

Capacity $(1-\rho)$
List-Decode $(1-H_q(\delta))$

Compares the original capacity conjecture $(1-\rho)$ with the actual list-decoding capacity bound using q-ary entropy.

Entropy Function $H_q(x)$

$H_q(x)$ Entropy
Identity $(x)$

The gap $H_q(x) - x \leq 1/\log_2(q)$ characterizes the difference between capacity conjectures.